This monograph is devoted to the development of the theory of pseudo-differential operators on spaces with symmetries. Such spaces are the Euclidean space \mathbb{R}^n, the n-torus \mathbb{T}^n, compact Lie groups, and compact homogeneous spaces. The book consists of several parts. One of our aims has been not only to present new results on pseudo-differential operators but also to show parallels between different approaches to pseudo-differential operators on different spaces. Moreover, we tried to present the material in a self-contained way to make it accessible for readers approaching the material for the first time.

Content

I Foundations of analysis
- A Sets, topology and metrics
- B Elementary functional analysis
- C Measure theory and integration
- D Algebras

II Commutative symmetries
- 1 Fourier analysis on \mathbb{R}^n
- 2 Pseudo-differential operators on \mathbb{R}^n
- 3 Periodic and discrete analysis
- 4 Pseudo-differential operators on \mathbb{T}^n
- 5 Commutator characterisations

III Representation theory of compact groups
- 6 Groups
- 7 Topological groups
- 8 Linear Lie groups
- 9 Hopf algebras

IV Non-commutative symmetries
- 10 Pseudo-differential operators on compact Lie groups
- 11 Fourier analysis on $SU(2)$
- 12 Pseudo-differential operators on $SU(2)$
- 13 Pseudo-differential operators on homogeneous spaces

Quantization of operators

Let σ_A be the symbol of a continuous linear operator $A : C^\infty(G) \to C^\infty(G)$. Then

$$A f(x) = \sum_{[\xi] \in \hat{G}} d\xi \text{Tr} \left(\xi(x) \sigma_A(x, \xi) \hat{f}(\xi) \right),$$

for every $f \in C^\infty(G)$ and $x \in G$. Conversely, we have

$$\sigma_A(x, \xi) = (\xi(x))^* A(x) \in C^{d_\xi \times d_\xi}_{C^\infty(G)}.$$

Fourier Series on compact Lie groups

If $\xi : G \to U(d_\xi)$ is a unitary matrix representation of a compact Lie group G, then

$$\hat{f}(\xi) = \int_G f(x) \xi(x)^* dx \in C^{d_\xi \times d_\xi}$$

has matrix elements

$$\hat{f}(\xi)_{mn} = \int_G f(x) \xi(x)_{mn} dx \in C, \ 1 \leq m, n \leq d_\xi.$$

If $f \in L^2(G)$ then

$$\hat{f}(\xi)_{mn} = (f, \xi_{mn})_{L^2(G)},$$

and by the Peter–Weyl Theorem we have

$$f(x) = \sum_{[\xi] \in \hat{G}} d\xi \text{Tr} \left(\xi(x) \hat{f}(\xi) \right),$$

for almost every $x \in G$, where the summation is understood so that for each class $[\xi] \in \hat{G}$ we pick just (any) one representative $\xi \in [\xi]$.

Information

QR code for downloading the book
michael.ruzhansky@ugent.be
ville.turunen@aalto.fi
Please visit:
ruzhansky.org and analysis-pde.org